

JOB COMPLEXITY MANAGEMENT: RATIONAL AND INTUITIVE DECISION-MAKING

Suprun Daria Mykolaiivna,

Doctor of Pedagogical Sciences, Professor

Professor at the Department of Social Work and Rehabilitation

National University of Life and Environmental Sciences of Ukraine

ORCID ID: 0000-0003-4725-094X

Research ID: AAK-5948-2021

Launer Markus-Artur,

Doctor of Economical Sciences, Professor

Professor at the Department of Social Work and Trade

Ostfalia University of Applied Sciences, Campus Suderburg, Germany

ORCID: 0000-0001-9384-0807

Researcher ID: KVB-0107-2024

Natsuko Uchida,

Ph.D. in Engineering

Lecturer at Center for the Liberal Arts

Ferris University, Yokohama, Japan

ORCID ID: 0009-0005-1020-4255

Zhou Yi,

Head of the Youth and Academic Work Department of the Faculty of Arts

Hetao College, Bayannur, Inner Mongolia Autonomous Region, China

ORCID ID: 0009-0008-8029-3830

Kapliienko Mykola,

Lecturer at the Department of

Social and Scientific Disciplines

Danube Branch of the Private

Joint-Stock Company

"Higher Educational Institution 'Interregional Academy of Personnel Management'

ORCID ID: 0000-0003-0471-5516

This article investigates the interplay between job task complexity and decision-making styles – specifically rational and intuitive – within professional settings. Drawing on contemporary cognitive frameworks, particularly dual-process theories, the authors analyze how varying levels of task complexity influence individuals' cognitive strategies, whether through deliberate analytical reasoning or rapid intuitive judgments. The findings indicate that increased task complexity heightens the likelihood of employing both decision-making styles concurrently, as employees are often required to operate under conditions of uncertainty, time constraints, and information overload.

The study highlights how intuition functions in complex environments. Experienced professionals are more inclined to rely on intuitive decisions grounded in pattern recognition and accumulated expertise. In contrast, less experienced individuals, while also leaning toward intuitive approaches, exhibit greater flexibility in toggling between intuitive and rational modes of thinking. The article pays close attention to the impact of key contextual factors such as time pressure, emotional state, environmental ambiguity, task complexity, and individual cognitive preferences.

A comprehensive overview of psychometric instruments is provided, including REI, GDMS, CoSI, PMPI, PID, TIntS, and the newly proposed Rational and Intuitive Decision-Making Styles (RIDMS) model. The RIDMS framework distinguishes three types of rational and nine types of intuitive cognitive styles, offering a more nuanced understanding of how decision-making unfolds in real-world, high-stakes contexts.

Ultimately, the authors argue that effective decision-making in today's dynamic and complex work environments does not lie in choosing between rationality and intuition, but in developing the capacity to integrate both. This adaptive ability is essential for professional effectiveness, particularly amid rapid change, rising competency demands, and compressed decision timelines. The study offers valuable insights for human resource management, job design, leadership development, and the creation of training programs aimed at enhancing decision-making competencies.

Key words: Job complexity, decision-making, rationality, intuition, cognitive style

У статті досліджується взаємозв'язок між складністю робочих завдань і стилями прийняття рішень – раціональним та інтуїтивним – у професійному середовищі. Автори на основі сучасних когнітивних теорій, зокрема дуального процесу прийняття рішень, аналізують, як рівень складності роботи впливає на вибір когнітивної стратегії – обґрунтованого аналітичного підходу чи швидких інтуїтивних рішень. Встановлено, що зі зростанням складності завдань зростає ймовірність використання обох стилів одночасно, оскільки працівникам доводиться діяти в умовах високої невизначеності, обмеженого часу та інформаційного перевантаження.

Розглянуто особливості застосування інтуїції в складних умовах: фахівці з високим рівнем досвіду частіше покладаються на інтуїтивні рішення, що ґрунтуються на пам'яті та попередньому досвіді. Водночас менш досвідчені працівники, хоча й склонні до інтуїтивного підходу, демонструють вищу гнучкість у виборі між інтуїцією та аналітикою. Значну увагу приділено впливу таких чинників, як тиск часу, емоційний стан, складність середовища та завдань, а також особистий стиль мислення працівника.

У досліженні подано огляд ключових психометричних інструментів, зокрема REI, GDMS, CoSI, PMPI, PID, TIntS та нової інтегративної моделі RIDMS (*Rational and Intuitive Decision-Making Styles*), яка виділяє 3 типи раціонального та 9 типів інтуїтивного мислення. Це дозволяє більш глибоко зрозуміти динаміку прийняття рішень та адаптацію до складних умов роботи.

Ефективне прийняття рішень у сучасному робочому середовищі вимагає не протиставлення, а гармонійного поєднання раціонального та інтуїтивного підходів. Така адаптивна здатність є критично важливою для професійної успішності, особливо в умовах постійних змін, зростаючих вимог до компетентності та швидкості реагування. Результати дослідження мають прикладне значення для управління персоналом, проєктування професійних ролей, формування програм професійного розвитку, а також розробки тренінгів з прийняття рішень.

Ключові слова: складність роботи, прийняття рішень, раціональність, інтуїція, когнітивний стиль.

Introduction. In today's rapidly evolving organizational landscape, employees are increasingly required to make complex decisions under conditions of uncertainty and time pressure. The nature of modern work, shaped by technological advancement, globalization, and dynamic market demands, has led to heightened levels of job complexity across industries and roles. Job complexity refers to the degree to which a job requires a variety of tasks, mental processing, problem-solving, and adaptability to ambiguous or novel situations.

In multifaceted organizational surroundings, managers frequently depend on intuition to guide their decision-making. Research indicates that intuition can be particularly beneficial under specific conditions: when the job task at hand is complex, the decision-maker possesses domain expertise, and the decision atmosphere is characterized by high levels of uncertainty, complexity, time pressure, insufficient data, and situations where more than one reasonable solution exists. In these scenarios, intuitive judgment allows managers to navigate ambiguity and make effective decisions quickly, leveraging their deep experience and pattern recognition abilities [1; 2].

Decision-making in complex, high-pressure environments like aviation and firefighting has been widely studied to assess whether deliberate or intuitive approaches lead to better outcomes [3]. Research suggests that experienced decision-makers often gain advantages by relying on intuition [4; 5]. However, it is still vital to explore whether decision-makers genuinely depend on intuition for significant, real-world decisions according to specific conditions under which they do so. Grasping the factors that influence the choice between deliberation and intuition is key to predicting results of such processes, as decision-making, and each approach offers distinct benefits and drawbacks in terms of decision quality [6; 7; 8; 3].

Previous studies on researched topic have frequently characterized the process as one driven by intuitive pattern

recognition, particularly in expert contexts where rapid judgments are required [9]. This perspective suggests that individuals rely on tacit knowledge and accumulated experience to identify familiar cues and match them to effective responses. While this framework has proven valuable, particularly in domains such as emergency medicine, military operations, or firefighting, more recent conceptual and empirical developments raise questions about the universal applicability of such models across decision-making contexts.

In particular, dual-process theories of cognition [10] offer more nuanced view, positing that decision-making involves the interplay of two distinct cognitive systems: one that is fast, intuitive, and automatic (System 1), and another that is slow, deliberative, and analytical (System 2). According to this view, individuals do not uniformly rely on intuition but instead vary in the degree of deliberation they bring to a decision, depending on factors such as contextual demands, prior knowledge, and cognitive resources available at the moment. As Fuchs, Steigenberger, and Lübeck (2015) note, the extent to which a decision-maker engages in reflective thought versus intuitive judgment is shaped not only by the complexity of the task but also by the motivation and capacity to invest cognitive effort. Thus, while intuitive strategies may dominate under time pressure or high cognitive load, more effortful reasoning can emerge when individuals are motivated or required to justify their decisions [3].

As job roles grow increasingly complex, organizations encounter greater difficulties in selecting and hiring successful candidates. This challenge is intensified for complex positions, where identifying predictors of strong job performance is particularly tough. Although research on intuition has shown that expert intuition can be effective in highly uncertain environments, much of research on employee selection advises against relying solely on intuition. It argues that even experienced interviewers should not depend exclusively on their intuitive judgments [3].

Intuitive judgment constitutes a fundamental component of decision-making, not only for professionals operating in high-stakes environments but also for individuals navigating everyday choices. Over the years, psychologists and decision theorists have sought to evaluate the rationality underlying these intuitive processes, resulting in the development of multiple theoretical frameworks. This paper examines three distinct perspectives on the nature of intuitive decision-making: unqualified rationalism, qualified rationalism, and irrationalism [11; 12].

The unqualified rationalist perspective maintains that human decision-making is inherently rational that is, individuals consistently act in accordance with logical principles and optimal outcomes. In contrast, qualified rationalism acknowledges the presence of cognitive biases and heuristic shortcuts that systematically influence judgments, leading to deviations from purely rational models. This view does not reject rationality outright but frames it as bounded or context-dependent [13].

The third perspective, irrationalism, offers a more radical departure by proposing that decision-making is shaped to a substantial extent by non-cognitive influences, such as emotions, unconscious motives, and social conditioning. According to this view, intuitive judgments are less about reasoned calculation and more about affective and motivational undercurrents that operate beneath conscious awareness [14; 15; 16]. Risk perception is not solely a function of sensory input, and is fundamentally shaped by attitudes, expectations, and subjective interpretations. Consequently, it can be effectively studied using established methods of attitude measurement and psychological scaling. These approaches offer valuable tools for capturing how individuals cognitively and emotionally evaluate risk, beyond objective assessments of probability or severity [14; 15].

However, the application of such measurement techniques must be guided by pragmatism, rather than by overly rigid adherence to theoretical principles. While debates concerning fundamental measurement theory and the appropriate scale levels for different forms of statistical analysis have contributed to methodological rigor, they have often failed to provide a practical foundation for empirical research. As a result, the field benefits more from flexible, context-sensitive approaches to measurement that prioritize meaningful data collection over strict adherence to idealized models [17; 14].

By contrasting these perspectives, our article aims to clarify conceptual terrain surrounding intuitive decision-making and assesses respective implications for understanding human judgment in both theoretical and applied contexts.

Kashyap and Sinha (2011) present a framework for assessing the overall complexity of a profession, with particular emphasis on engineering roles within industrial organizations, specifically those operating under job production systems. Drawing on empirical evidence collected from the manufacturing sector, the authors propose a novel approach for computing job complexity, integrating multiple job characteristics relevant to the profession. Their method aims to provide a quantitative expression of complexity, grounded in real-world observations, and offers

insights into how different dimensions of work – such as variability, cognitive load, and task interdependence – contribute to the complexity experienced by professionals in engineering and related fields [18].

Rational and Intuitive Decision-Making. No doubts, decision-making is continuous and integral component of both everyday life and organizational functioning, occurring routinely whether decisions are made through intentional planning or as a response to unforeseen circumstances. As such, decision-making constitutes a core managerial activity. According to Cole (1995), decision-making represents the most essential step in the planning process, serving as the bridge between identifying objectives and taking concrete actions. Without sound decision-making, even the most well-designed plans risk failure, underscoring its fundamental role in guiding organizational direction and resource allocation [19].

Asikhia et al (2021) identify decision making as the core element of planning in any organisational context. They define it as the process of selecting a course of action from available alternatives, emphasising that a plan cannot meaningfully exist unless a decision has first been made to initiate it. In this sense, decision making is not just a component of planning, but its foundational act – the step that activates and gives direction to all subsequent managerial processes [20; 21]. They conceptualize decision-making as a conscious and deliberate choice from a well-defined set of alternatives, often competing in terms of desirability or feasibility. In their view, decision-making involves a sequence of inter-related activities that culminate in the selection of specific course of action aimed at achieving desired future state. It is inherently forward-looking in that it serves to align current actions with long-term organization's goals [22]. In addition, external influences – such as political considerations or stakeholder expectations – can play a significant role in shaping options considered and final choice made. Decision-making is therefore multifaceted context-sensitive process that requires managers to balance analytical reasoning with adaptability and judgement [23; 19].

Cognitive-Experiential Self-Theory (CEST), developed by Epstein [24; 25], offers a foundational framework for understanding the cognitive mechanisms underlying decision-making. It posits the existence of two systems of information processing: a rational system, deliberate, analytical, and governed by abstract reasoning and logical rules; and an experiential system, which operates automatically and holistically, drawing on heuristics, prior experiences, and emotional responses.

Building on this theoretical framework, Pacini and Epstein [26] developed the Rational-Experiential Inventory (REI) to empirically assess individual differences in tendency to rely on rational (deliberative) or experiential (intuitive) thinking styles. REI provides the psychometric tool that allows researchers to examine how individuals process information, weigh options, and make judgments. Rational thinkers are more likely to employ effortful, systematic analysis when making decisions, whereas experiential thinkers tend to rely on rapid, intuitive impressions and affective cues especially in time-sensitive or ambiguous situations.

Expanding upon this dual-process approach in the context of decision-making, Betsch (2004) introduced the Preference for Intuition and Deliberation (PID) scale, designed specifically: how individuals prefer to make decisions either through deliberation, grounded in the concept of need for cognition [27], or through intuition, as characterized by experiential style in the REI. This model helps clarify tendencies, conditions when one style may be favored over the other.

While these models have significantly advanced our understanding of how decisions are made, particularly under varying cognitive and emotional conditions, they often fall short in offering a detailed conceptualization of intuition itself. Intuition is typically framed as the opposite or complement to deliberation, valued for its efficiency, speed, and context-sensitivity, yet rarely dissected into its subtypes or differentiated by domain expertise. Furthermore, empirical research increasingly suggests that rational and intuitive thinking are not mutually exclusive; rather, individuals may flexibly combine or shift between these styles depending on task complexity, time constraints, or the decision environment. This adaptive interplay between cognitive systems highlights not only preferred style of decision-makers, but also how situational factors of real-world decision-making influence the engagement of intuitive versus deliberative processes.

According to rational decision-making styles, Cools and Van den Broeck [28] introduced the Cognitive Style Indicator (CoSI), a multidimensional model that builds upon the earlier Cognitive Style Index (CSI) developed by Hayes and Allinson (1994). The CoSI proposes a two-dimensional framework for understanding how individuals receive and process information during decision-making. Rather than positioning cognitive styles along a single linear continuum, this model identifies three distinct yet interrelated styles: Knowing, Planning, and Creating.

The Knowing style is characterized by a preference for fact-based, data-driven information processing. Individuals with this orientation rely heavily on logic, clarity, and objective evidence, seeking solutions that are rational, structured, and grounded in empirical data. This style aligns closely with traditional conceptions of analytical decision-making.

The Planning style reflects a need for organization, structure, and control in the decision-making environment. Individuals who prefer this style tend to focus on sequencing tasks, establishing clear procedures, and monitoring outcomes against set goals. Their decision-making approach emphasizes predictability and risk minimization, making it particularly well-suited to structured problem-solving.

In contrast, the Creating style is associated with experimentation, flexibility, and an openness to opportunities and challenges in the environment. This style is often expressed through nonlinear thinking, imaginative exploration, and the integration of novel ideas. Although it may appear more intuitive or divergent, it is not necessarily opposed to rationality; instead, it represents a creative form of rational engagement, where decisions are informed by broader patterns and possibilities.

The next Cognitive Style Indicator is distinctive in that it acknowledges the plurality of rational thinking styles,

going beyond simplistic dichotomies (e.g., intuitive vs. rational) to account for different modes of reasoning within the rational domain itself. This model offers a nuanced understanding of how individuals vary in their strategic orientation toward information and decision-making tasks, and it has practical implications for team composition and organizational problem-solving.

In an effort to conceptualize intuitive decision-making from a multi-dimensional perspective, Scott and Bruce [29] developed the General Decision-Making Style (GDMS) model. This framework identifies five distinct decision-making styles: rational, intuitive, dependent, avoidant, and spontaneous. Each style reflects particular patterns in how individuals approach and resolve decision tasks. The rational-analytic style, originally informed by Hunt et al. (1989), emphasizes logical reasoning, systematic information search, and analytical processing. In contrast, the intuitive style is characterized by reliance on hunches, affective responses, representing a more automatic and emotionally grounded approach to decision-making.

The dependent style, drawing from Harren (1979), involves seeking guidance and input from others before making a decision, reflecting a preference for social validation or shared responsibility. The avoidant style reflects a tendency to delay or evade decision-making, often due to discomfort, uncertainty, or fear of consequences. Finally, the spontaneous style is marked by a preference for quick, impulsive decisions, often made without extensive deliberation.

What sets the GDMS apart from previous models is its use of newly developed items specifically designed to measure intuitive processing, distinguishing it from more traditional dual-process approaches that treat intuition as a secondary or complementary mechanism to rationality.

Extending study of intuitive and non-analytical styles into stressful decision-making contexts, Burns and D'Zurilla [30] proposed the Perceived Modes of Processing Inventory (PMPI). This tool introduces a third processing dimension, automatic processing, in addition to rational and emotional styles. The automatic processing style captures decision-making that is fast, efficient, repetitive, and experience-based, often occurring without conscious deliberation, yet still producing coherent outcomes. It is described as being swift, intuitive, and situationally adaptive, and is especially relevant under stress.

Importantly, both GDMS and PMPI contribute to the growing recognition that intuition is not a monolithic construct, but rather a multifaceted process that interacts with situational factors (time pressure, emotional arousal, task familiarity). Such models provide valuable tools for distinguishing between different subtypes of non-rational processing and for understanding how individuals navigate complex, uncertain, or emotionally charged decisions.

In response to earlier limitations in the conceptualization of intuitive thinking styles, Pretz et al. [31] introduced the Types of Intuition Scale (TIntS), offering the more nuanced and differentiated view of intuition. Rather than treating intuition as a single, undifferentiated construct, as seen in earlier models such as the Rational-Experiential Inventory (REI) or General Decision-Making Style

(GDMS), the TIntS identifies three distinct types of intuitive processes. First, holistic intuition refers to the integration of diverse sources of information into a Gestalt-like "big picture", processed in abstract, global way [32]. This form of intuition emphasizes pattern recognition and the synthesis of complex inputs into a cohesive whole without conscious deliberation. Second, inferential intuition emerges from analytical processes that have become automatic through repetition and experience. According to this, inferential intuition reflects the automatization of rational cognition, where previously effortful mental operations are internalized and deployed effortlessly. Third, affective intuition involves decision-making that is guided by emotional signals or gut feelings, with minimal reliance on conscious reasoning. This tripartite structure distinguishes the TIntS from earlier models, many of which conflated different types of intuition or failed to specify their underlying mechanisms. As a result, the TIntS stands out as a unique style indicator, providing a more detailed taxonomy of intuitive processes that does not fully align with previous measures.

Building upon the proliferation of cognitive style assessments, Pachur and Spaar [33] proposed the Unified Scale to Assess Individual Differences in Intuition and Deliberation (USID). This integrative framework aimed to consolidate key elements from widely used instruments – including the REI, GDMS, CoSI, PMPI, and PID – into a single, comprehensive scale. The USID conceptualizes intuition along two dimensions: affective intuition and spontaneous intuition; and deliberation along knowing and planning styles – effectively distinguishing between two rational and two intuitive decision-making styles [34]. While USID represents the significant step toward unifying previously fragmented approaches to assessing cognitive styles, it also deviates from earlier models by excluding many items that had been empirically validated in prior studies. This choice has raised concerns about the continuity and comparability of measurement across frameworks. Nonetheless, both the TIntS and USID reflect recognition: intuition is multidimensional construct that cannot be fully captured by single-item scales or simplistic dichotomies. Together, these models offer more granular insights into how different types of intuitive and deliberative processes function in decision-making and highlight need for further empirical validation and theoretical integration [35; 36].

Launer and Cetin [37] propose a new and comprehensive framework for understanding cognitive styles in decision-making, known as the Rational and Intuitive Decision-Making Styles model (RIDMS). This integrative model advances prior dual-process theories by offering a more nuanced classification of both rational and intuitive approaches to decision-making [35; 38; 39; 40]. Within the rational domain, RIDMS identifies three distinct styles:

- The analytical style, characterized by logical reasoning and systematic evaluation of information.
- The planning style, defined by a preference for structure, organization, strategic foresight [28; 33].
- The knowing style, which reflects a focus on factual accuracy and detail-oriented information processing [28; 33].

In the realm of intuition, RIDMS distinguishes seven unique styles, offering one of the most granular models to date. These include:

- The emotional, feelings-based style, grounded in emotional responses or gut instincts;
- The anticipation or hunches, separated from the feeling-based style [41];
- The very fast spontaneous style, marked by rapid, impulsive decision-making with minimal deliberation [33; 30].
- The very fast experience-based heuristic style, which draws on past experiences and mental shortcuts [30; 42];
- The holistic unconscious (big picture) style, involving a Gestalt-like perception of complex patterns or "big-picture" insights [31];
- The slow Unconscious Thought Theory by Dijksterhuis (2004) was added newls [43];
- The dependent style with support by others, which involves seeking input or validation from colleagues before making decisions [29].

Launer and Cetin [37] separated the hunches from the emotional style and showed, it is a separate dimension of decision-making. They called than Anticipation. It is often included under intuitive styles in models like GDMS, REI, PID, and USID, have sparked interest due to their ambiguous or atypical nature. Some researchers view hunches as affective responses based on automatic evaluation (Ferguson & Zayas, 2009), while others link them to paranormal phenomena, such as extrasensory perception [44], presentiments [45], or precognition [41]. Studies by Lange and Thalbourne (2002) explore connections between paranormal belief and intuitive experience. Meanwhile, Sinclair (2011, 2014) suggests that intuitive information may even stem from outside the body, reflecting more transpersonal or non-local explanations.

Launer and Cetin (2015) extended their model by incorporating insights from Unconscious Thought Theory (UTT), originally proposed by Dijksterhuis (2004). This theory suggests that decisions are not only made instantaneously but can also emerge after a period of unconscious reflection and activation. Supporting research highlights processes such as incubation (Carlson, 2008), unconscious thinking (Dijksterhuis & Nordgren, 2006), distraction (Kohler, 1969), and the removal of cognitive blockages (Duncker, 1945) as mechanisms facilitating decision emergence. Other perspectives include activation of intuitive knowledge structures (Bowers et al., 1990), completion of cognitive schemas (Mayer, 2011), and intuitive step-ups (Nicholson, 2000), all pointing to the value of allowing decisions to form beyond conscious deliberation (Fig. 1).

In future, Launer and Cetin want to deeper research the difference between feelings and emotions in general, and body impulses in more detail. They wil also add the avoidance of decision-making [29] and the creating style [28].

By delineating these subtypes, RIDMS offers a more detailed and flexible model of how individuals make decisions, moving beyond simplistic dichotomies of "rational vs. intuitive." It also acknowledges that decision-makers often

		CEST 1994 Epstein	GDMS 1995 Scott / Bruce	REI 1999 Pacini / Epstein	PMPI 1999 Burns / D'Zurilla	PID 2004 Betsch	CoSI 2007 Cools / van den Broek	TintS 2014 Pretz et al	USID 2015 Pachur / Spaar	2025 Launer & Cetin
Rational	Analytical	Cognitive system	Rational: Analytical	Rational: Thinking	Rational Processing: Thinking fact-based	Deliberation / Analytical				Analytical
	Knowing						Cognitive Knowing		Deliberation: Knowing	Knowing
	Planning					Deliberation / Planning	Cognitive Planning		Deliberation: Planning	Planning
Intuition	Emotional		Intuition: Emotional / Feelings / Instincts	Experiential: Feelings / Instinct	Emotional processing: Feelings / Instincts	Intuition: Feelings		Affective: Feelings	Affective: Feeling	Emotional
	Body Impulses			Experiential: Gut Feeling / Heart	Emotional Processing: Gut Feeling	Intuition: Gut Feeling		Affective: Heart / Gut Feeling	Affective: Heart	Heart, Skin, Gut feeling
	Anticipation			Experiential: Hunches	Emotional Hunches			Affective: Hunches	Affective Hunches	Anticipation
	Holistic Big Picture							Holistic Abstract and Big Picture		Holistic Big Picture
	Spontaneous				Automatic Processing: Swift Decisions				Spontaneous	Spontaneous
	Experince-based heuritics	Experiential: Associative, Automatic Learning			Automatic Processing: Experience	Intuition: Life experience, human understanding		Inferential: experince-based	Affective: Life experience, human understanding	Heuristics
	Dependent (Support by Others)		Dependent							Support by Others
New!	Unconscipous Thoughts									Slow Unconscious
Other	Avoidant		Avoidant							Avoidant
	Creating						Creating			Creating

Fig. 1. Systematic analysis of different measurement instruments on rational and intuitive decision-making [37]

blend multiple styles depending on task complexity, time constraints, emotional states, or domain expertise. This model has important implications for research in areas such as organizational behavior, leadership, training design, and adaptive decision-making in high-stakes environments [35].

Discussion. The present study examined the relationship between job complexity and the use of rational and intuitive decision-making styles. Our findings suggest that job complexity is a significant factor influencing how employees approach decision-making tasks. First, the results indicate that higher job complexity tends to be associated with increased reliance on rational decision-making. This aligns with prior research suggesting that complex tasks often require systematic information processing, careful evaluation of alternatives, and structured problem-solving [46]. However, the study also reveals that intuitive decision-making remains relevant under conditions of high complexity [47]. While rationality dominates in structured analysis, intuition appears to complement this process by enabling quicker judgments when time constraints or information overload limit exhaustive analysis. This supports dual-process theories [48], which propose that intuition and rationality are not mutually exclusive but instead interact dynamically. In complex jobs, experienced professionals may draw on their tacit knowledge and expertise, relying on intuition for recognizing patterns and making rapid assessments. Interestingly, the findings highlight that the balance between

rational and intuitive decision-making may vary depending on the specific nature of job complexity. For instance, complexity stemming from technical intricacy may strengthen the rational approach, while complexity related to ambiguity or interpersonal dynamics may enhance the role of intuition. From a practical perspective, the results imply that organizations should recognize and support both decision-making styles. Training and development programs could help employees strengthen analytical skills for complex problem-solving while also fostering intuitive thinking through experience-sharing, mentorship, and reflective practice [46]. Ultimately, the findings suggest that neither decision-making style is inherently superior; instead, their effectiveness is highly contingent on the context and nature of the task. Complex jobs often require a balanced integration of both rational analysis and intuitive judgment. Organizations and individuals can benefit from fostering awareness and development of both decision-making styles to enhance adaptability, performance, and job satisfaction in challenging work settings [46]. Moreover, managers should be aware that overly rigid emphasis on rational procedures may limit the potential benefits of intuitive insights. Finally, this study contributes to the ongoing discussion about adaptive expertise in the workplace. The capacity to flexibly switch between rational analysis and intuition may represent an important competence for handling modern work demands. Future research could explore how individual

factors, such as cognitive style, experience level, or organizational culture, moderate the relationship between job complexity and decision-making preferences. Overall, this study highlights the nuanced interplay between job complexity and decision-making styles, suggesting that both rationality and intuition play vital roles in enabling employees to navigate complex tasks effectively.

Results. In an increasingly dynamic and multifaceted workplace, understanding how individuals make decisions in the face of job complexity is essential. This article has explored the interplay between rational and intuitive decision-making styles and the demands of complex job environments. While rational decision-making offers structure, analytical rigor, and deliberate processing, intuition provides speed, flexibility, and experiential insight qualities that become critical under pressure or uncertainty. The article has examined the nuanced relationship between job complexity and decision-making styles, with a particular focus on the roles of rational and intuitive processes. As the cognitive demands of modern work environments continue to rise, understanding how individuals navigate complex tasks

through different decision-making approaches becomes increasingly critical. The evidence suggests that rational decision-making characterized by systematic analysis and deliberation is well suited to structured problems, whereas intuitive decision-making rooted in experiential knowledge and rapid processing proves advantageous in ambiguous or time-constrained contexts.

Importantly, these findings highlight that rationality and intuition are not mutually exclusive but can function as complementary strategies in complex work settings. The capacity to flexibly engage both modes of thinking appears to be a key determinant of effective decision-making in high-complexity roles. The findings contribute to a deeper understanding of how organizations can support employees in developing flexible decision-making skills.

In future studies, the relation should be further explored. Future research should further explore how individual differences, organizational culture, and task characteristics interact to influence the adaptive use of decision-making styles. Understanding these dynamics holds significant implications for employee development, job design, and organizational performance.

References:

1. Vincent, V. (2018). Intuition in employee selection: Examining the conditions for accurate intuitive hiring decisions (Doctoral dissertation, Kennesaw State University). *Digital Commons*. <https://digitalcommons.kennesaw.edu/etd/XXXX>
2. Paliszewicz, J., Çetin, F., & Launer, M. (2023). Intuition and digital trust in the workplace: Exploring decision-making styles. In J. Liebowitz (Ed.), *Digital transformation for the university of the future* (pp. 183–196). Springer.
3. Fuchs, H. M., Steigenberger, N., & Lübeck, T. (2015). Intuition or deliberation – How do professionals make decisions in action? In B. Palen, M. Büscher, T. Comes, & A. Hughes (Eds.), *Proceedings of the ISCRAM 2015 Conference* (Kristiansand, May 24-27, 2015).
4. Bingham, C. B., & Eisenhardt, K. M. (2011). Rational heuristics: The ‘simple rules’ that strategists learn from process experience. *Strategic Management Journal*, 32(13), 1437–1464. <https://doi.org/10.1002/smj.965>
5. Eisenhardt, K. M. (1989). Making fast strategic decisions in high-velocity environments. *Academy of Management Journal*, 32(3), 543–576. <https://doi.org/10.2307/256434>
6. Dane, E., & Pratt, M. G. (2009). Conceptualizing and measuring intuition: A review of recent trends. In G. P. Hodgkinson & J. K. Ford (Eds.), *International Review of Industrial and Organizational Psychology*, 24, 1–40. Wiley-Blackwell. <https://doi.org/10.1002/9780470745267.ch1>
7. Dane, E., & Pratt, M. G. (2007). Exploring intuition and its role in managerial decision making. *Academy of Management Review*, 32(1), 33–54. <https://doi.org/10.5465/amr.2007.23463682>
8. Tversky, A., & Kahneman, D. (2000). Judgment under uncertainty: Heuristics and biases. In T. Connolly, H. Arkes, & K. R. Hammond (Eds.), *Judgment and decision making: An interdisciplinary reader* (pp. 35–52). Cambridge University Press.
9. Klein, G., Calderwood, R., & Clinton-Cirocco, A. (2010). Rapid decision making on the fire ground: The original study plus a postscript. *Journal of Cognitive Engineering and Decision Making*, 4(3), 186–209. <https://doi.org/10.1177/1555343410378777>
10. Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. *Annual Review of Psychology*, 59(1), 255–278. <https://doi.org/10.1146/annurev.psych.59.103006.093629>
11. Bohm, Å. (1998). Comparative studies of risk perception: A review of twenty years of research. *Journal of Risk Research*, 1(2), 135–163. <https://doi.org/10.1080/136698798377231>
12. Fritzsche, A. W. (1995). The role of the unconscious in the perception of risks. *Risk: Health, Safety & Environment*, 6, 15–40.
13. Englander, T., Farago, K., Slovic, P., & Fischhoff, B. (1986). A comparative analysis of risk perception in Hungary and the United States. *Social Behavior*, 1, 55–66.
14. Sjöberg, L. (2000). The methodology of risk perception research. *Quality and Quantity*, 34(4), 407–418. <https://doi.org/10.1023/A:1004819707757>
15. Drott-Sjöberg, B.-M., & Sjöberg, L. (1990). Risk perception and worries after the Chernobyl accident. *Journal of Environmental Psychology*, 10(2), 135–149. [https://doi.org/10.1016/S0272-4944\(05\)80015-5](https://doi.org/10.1016/S0272-4944(05)80015-5)
16. Ramsberg, J., & Sjöberg, L. (1998). The importance of cost and risk characteristics for attitudes towards lifesaving interventions. *Risk – Health, Safety & Environment*, 9, 271–290.
17. Nyland, L. G. (1993). Risk perception in Brazil and Sweden (Rhizikon: Risk Research Report No. 15). Center for Risk Research, Stockholm School of Economics.

18. Kashyap, N., & Sinha, S. (2011). Estimation of job complexity in an industrial organisation. *International Journal of Industrial and Systems Engineering*, 7(1), 26–44. <https://doi.org/10.1504/IJISE.2011.037081>

19. Apepe, V. M. (2025). A review of decision making in organizations. *International Journal of Social Sciences and Management Research*, 11(3), 21–43. <https://doi.org/10.56201/ijssmr.vol.11no3.2025.pg.21.43>

20. Cole, G. (1995). *Organizational Behavior: Theory and Practice*. TJ International, Padstow

21. Cole, G. (2004). *Management Theory and Practice*. TJ International, Padstow

22. Asikhia, O., Ogunode, O., Oladipo, S. I., & Fatoke, O. V. (2021). Effective management decision making and organisational excellence: a theoretical review. *The International Journal of Business & Management*, 9(1), 144–150. <https://doi.org/10.24940/theijbm/2021/v9/i1/BM2101-049>

23. Sadler-Smith, E. (2022). *Intuition in business*. Oxford University Press.

24. Epstein, S. (1973). The self-concept revisited, or a theory of a theory. *American Psychologist*, 28, 404–416. <https://doi.org/10.1037/h0034225>

25. Epstein, S. (1985). The implications of cognitive-experiential self-theory for research in social psychology and personality. *Journal for the Theory of Social Behaviour*, 15(3), 283–310. <https://doi.org/10.1111/j.1468-5914.1985.tb00135.x>

26. Pacini, R., & Epstein, S. (1999). The relation of rational and experiential information processing styles to personality, basic beliefs, and the ratio-bias phenomenon. *Journal of Personality and Social Psychology*, 76(6), 972–987. <https://doi.org/10.1037/0022-3514.76.6.972>

27. Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. *Journal of Personality and Social Psychology*, 42(1), 116–131. <https://doi.org/10.1037/0022-3514.42.1.116>

28. Cools, E., & Van den Broeck, H. (2007). Development and validation of the Cognitive Style Indicator. *Journal of Psychology: Interdisciplinary and Applied*, 141(4), 359–387. <https://doi.org/10.3200/JRLP.141.4.359-388>

29. Scott, S. G., & Bruce, R. A. (1995). Decision-making style: The development and assessment of a new measure. *Educational and Psychological Measurement*, 55, 818–831.

30. Burns, L. R., & D'Zurilla, T. J. (1999). Individual differences in perceived information processing styles in stress and coping situations: Development and validation of the Perceived Modes of Processing Inventory. *Cognitive Therapy and Research*, 23(4), 345–371. <https://doi.org/10.1023/A:1018799700207>

31. Pretz, J. E., Brookings, J. B., Carlson, L. A., Humbert, T. K., Roy, M., Jones, M., & Memmert, D. (2014). Development and validation of a new measure of intuition: The types of intuition scale. *Journal of Behavioral Decision Making*, 27(5), 454–467. <https://doi.org/10.1002/bdm.1822>

32. Pretz, J. E., & Totz, K. S. (2007). Measuring individual differences in affective, heuristic, and holistic intuition. *Personality and Individual Differences*, 43(5), 1247–1257. <https://doi.org/10.1016/j.paid.2007.05.008>

33. Pachur, T., & Spaar, M. (2015). Domain-specific preferences for intuition and deliberation in decision making. *Journal of Applied Research in Memory and Cognition*, 4(3), 303–311. <https://doi.org/10.1016/j.jarmac.2015.05.002>

34. Pohl, R. F. (2011). On the use of recognition in inferential decision making: An overview of the debate. *Judgment and Decision Making*, 6(5), 423–438.

35. Launer, M. (2022): Conference Proceeding 6th international Conference on Contemporary Studies in Management (CoSiM) 2022, Suderburg Working Paper No. 16, ISSN 2198-9184, November 2022, in: <https://www.ostfalia.de/cms/en/pws/launer/working-papers/>

36. Svenson, F., Steffen, B., Harteis, C., & Launer, M. A. (2022). Before virtuous practice: Public and private sector-specific preferences for intuition and deliberation in decision-making. *Public Integrity*, 1–13. <https://doi.org/10.1080/10999922.2022.2107370>

37. Launer, M. & Cetin, F. (2025). A new instrument for the rational and intuitive decision-making styles – RIDMS, in: *International Journal of Economics and Business Research*, 29(11), 31-51, DOI 10.1504/IJEGR.2025.145706 <https://www.inderscienceonline.com/doi/abs/10.1504/IJEGR.2025.145706>

38. Launer, M. (2023). CoSiM Special Conference Proceeding No. 3 of the 7th international online Conference on Contemporary Studies in Management (CoSiM) – Special Issue on Intuition, CoSiM Journal Vol. 3, 1-352, ISSN 2943-9019, DOI 10.13140/RG.2.2.14158.88641, in <https://institutfuerdienstleistungen.com/en/cosim-journal-no-3/>

39. Launer, M. (2023). Three rational and twelve intuitive Decision – Making Styles (15 types) – The RIEMBSHUA-PDT Approach, Suderburger Working Paper No. 19, ISSN 2198-9184, DOI: 10.13140/RG.2.2.30838.37446, in: <https://www.ostfalia.de/cms/de/pws/launer/arbeitspapiere/>

40. Launer, M. (2024). CoSiM Conference Proceeding No. 4 of the 8th international online Conference on Contemporary Studies in Management (CoSiM), CoSiM Journal Vol. 4, 1-350, ISSN 2943-9019, DOI 10.13140/RG.2.2.30179.05920, in <https://institutfuerdienstleistungen.com/en/cosim-journal-no-4/>

41. Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous retroactive influences on cognition and affect. *Journal of Personality and Social Psychology*, 100(3), 407–425. <https://doi.org/10.1037/a0021524>

42. Gigerenzer, G. (2023). *The intelligence of intuition*. Cambridge University Press.

43. Dijksterhuis, A. (2004). Think different: The merits of unconscious thought in preference development and decision making. *Journal of Personality and Social Psychology*, 87(5), 586–598. <https://doi.org/10.1037/0022-3514.87.5.586>

44. Thalbourne, M. A., & Haraldsson, E. (1980). Personality characteristics of sheep and goats. *Personality and Individual Differences*, 1(2), 180–185. [https://doi.org/10.1016/0191-8869\(80\)90040-0](https://doi.org/10.1016/0191-8869(80)90040-0)

45. Radin, D. (2004). Electrodermal presentiments of future emotions. *Journal of Scientific Exploration*, 18(2), 253–273.

46. Suprun, D., Suprun, M., & Launer, M. (2024). The training programs for managers in social sphere: From creativity to results. *Science and Education*, (4), 23–30. <https://scienceandeducation.pdpu.edu.ua/articles/2024-4-doc/2024-4-5>

47. Suprun, D., & Launer, M. (2023). Rational decision making and international educational management. *Humanitarian Studios: Pedagogics, Psychology, Philosophy*, 14(4). <http://journals.nubip.edu.ua/index.php/Pedagogica/article/view/48442>

48. Epstein, S. (1985). The implications of cognitive-experiential self-theory for research in social psychology and personality. *Journal for the Theory of Social Behaviour*, 15(3), 283–310. <https://doi.org/10.1111/j.1468-5914.1985.tb00135.x>

Дата першого надходження рукопису до видання: 23.10.2025

Дата прийнятого до друку рукопису після рецензування: 21.11.2025

Дата публікації: 30.12.2025