INVESTIGATION OF THE INFLUENCE OF WATER USE OF THE POWER PLANT ON THE HYDROLOGICAL REGIME OF THE RIVER (ON THE EXAMPLE OF THE STYR RIVER)

Authors

DOI:

https://doi.org/10.32782/naturalspu/2024.1.9

Keywords:

hydrological mode and indicators, water discharge, cooling system, ecological state, anthropogenic impact.

Abstract

The purpose of this study was to investigated the hydrological mode of the Styr river waters in the area of influence of Rivne Nuclear Power Plant (RNPP) water use with the identification of factors that determine them and their interrelated impact. The approach based on the analysis of the range of variability (RVA) was used to assess changes in the hydrological parameters of the Styr river in the RNPP water intake and discharge area. The identified patterns and the analysis of the dynamics of RNPP water use indicate an increase in water consumption costs in the warm season, which is associated with higher ambient temperatures and, accordingly, greater evaporation of water from the cooling system. A positive, significant (p < 0,0001), strong (r = 0,7–0,9) correlation with R-sq = 0,9869 was found between the RNPP water intake and discharge regime and the river water temperature. The novelty of the work is to compare the actual water discharge of the Styr River in the RNPP water use area with the data of the normalised difference water index (NDWI) obtained using the Sentinel-2 satellite image of the Styr River. The practical significance of the study is that the results obtained from the study can be used to plan and implement appropriate water management strategies and focus on water quality and sources of pollution to prevent water pollution in water bodies and can be used to assess the non-radiological impact of discharges from nuclear power plants. The results of the study indicate that there is no impact of discharges from RNPPs, and therefore no improvement measures are required, since hydroecological indicators and changes in their values do not affect the ecological status of surface water bodies and do not impede the achievement of the Water Framework Directive objectives.

References

European Parliament. Council of the European Union European Commission Council. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities. 2000. L327, 1–72.

Інформація Державного агентства водних ресурсів України. URL: https://davr.gov.ua/ rg (дата звернення: 09.01.2024).

European Environment Agency. European Waters – Assessment of Status and Pressures 2018. № 7/2018 ; Publications Office of the European Union. Luxembourg, 2018. ISBN 978-92-9213-947-6.

European Commission. WFD Reporting Guidance 2022. Final Draft v 6.2 ; European Commission. Helsinki, Finland, 2023. URL: https://cdr.eionet.europa.eu/help/WFD/WFD_715_2022/Guidance%20documents/WFD%20Descriptive%20Reporting%20Guidance.pdf (дата звернення: 09.01.2024).

Hydrological Regime Alteration Assessment in the Context of WFD 2000/60: A European and Global Review / A. Mentzafou et al. Sustainability. 2023. № 15. 15704 p. https://doi.org/10.3390/su152215704.

How much water does a river need? / B. Richter et al. Freshwater Biology. 1997. № 37. P. 231–249. https://doi.org/10.1046/j.1365 2427.1997.00153.x.

ESA. URL: https://www.esa.int/ (дата звернення: 09.01.2024).

Mcfeeters S. K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996. № 17. P. 1425–1432.

Kuznietsov P., Biedunkova O. Study of Сhanges in Acid-Alkaline Balance of Cooling Water Сirculating System of Power Plants during Water Treatment by Liming According to Stabilization Treatment Method. 4’th International Scientific Conference Chemical Technology and Engineering: Proceedings, June 26–29’th. 2023. Lviv, Ukraine. P. 239–241. https://doi.org/10.23939/cte2023.239.

Kuznetsov P.N., Tichomirov A.U. Water-chemistry operating condition of the second circuit power units № № 1–4 Rivne NPP with ethanolamines corrective treatment. Probl. At. Sci. Technol. 2017. № 2–108. P. 109–113.

Report on activity 1. Analysis of water regime, occurrence of floods and their consequences in the basin of the river Styr. “Monitoring and forecasting of floods in the Pripyat basin”. Nauka radi mira I bezopasnosti. Proekt NATO 983516. URL: https://uhmi.org.ua/project/nato/FINAL_REPORT_Activity_1.doc (дата звернення: 09.01.2024).

Бєдункова О.О., Кузнєцов П.М. Формування карбонатної системи оборотної охолоджуючої води атомної електростанції та вплив на pH поверхневих вод при зворотних скидах. Екологічні науки. 2023. Т. 3. № 48. С. 163–168. https://doi.org/10.32846/2306-9716/2023.eco.3-48.26.

Кузнєцов П.М., Бєдункова О.О. Порівняльний гідробіологічний моніторинг вод систем технічного водопостачання атомних електростанцій. Водні біоресурси та аквакультура. 2022. Т. 2. № 12. С. 180–190. https://doi.org/10.32851/wba.2022.2.13.

Дозвіл на спецводокористування ПС Рівненської АЕС № 53/РВ/49д-20 2020. URL: https://e-services.davr.gov.ua (дата звернення: 09.01.2024).

Звіт за темою «Гідравлічні дослідження водозабору Рівненської АЕС на р. Стир». Київ, 1994. 47 с.

Бєдункова О.О., Кузнєцов П.М. Факторний аналіз динаміки азотних речовин води річки Стир у зоні впливу Рівненської АЕС. Вісник Національного університету водного господарства та природокористування. 2023. Т. 1. № 101. С. 3–17. https://doi.org/10.31713/vs120231.

Bussi G., Whitehead P.G. Impacts of droughts on low flows and water quality near power stations. Hydrological Sciences Journal. 2020. № 65: 6. P. 898–913. https://doi.org/10.1080/02626667.2020.1724295.

Бєдункова О.О., Кузнєцов П. М. Методологія застосування корекційної обробки біоцидами систем технічного водопостачання електростанцій. Вісник Національного університету водного господарства та природокористування. 2023. Т. 2. № 102. С. 3–15. https://doi.org/10.31713/vs220231.

Published

2024-05-10