ANALYSIS OF VARIOUS WAYS OF HYDROGEN PRODUCTION IN TERMS OF RELIABILITY AND EMISSION REDUCTION EFFICIENCY

Authors

DOI:

https://doi.org/10.32782/naturalspu/2024.1.15

Keywords:

hydrogen, renewable energy sources, emission reduction, global temperature rise.

Abstract

Interest in ensuring the production of energy from renewable sources is higher than ever due to the daily observation of the effects of climate change. The use of energy from renewable sources (RES) is currently one of the priority directions for the development of world energy. The problem of hydrogen energy in this aspect has recently attracted more and more attention. The use of energy from renewable sources (RES) is currently one of the priority directions for the development of world energy. The problem of hydrogen energy in this aspect is attracting more and more attention. Hydrogen (H2), as an energy carrier, can play an important role in various industrial sectors. They are difficult to reduce, but to minimize their negative impact on the environment, the hydrogen supplied must be reliable, have low emissions and be inexpensive. To reduce global greenhouse gas emissions and stop global temperature increases, zero-emissions technology must scale rapidly. While electrification with increased use of renewable energy sources can help eliminate emissions in buildings, passenger vehicles and low-temperature heating systems, other zero-emission fuels may be needed in hard-to-reduce industries such as the cement and steel industries. together with sea shipping and long-distance land transport. Hydrogen (H2) is one such zero-emission fuel that can be used to minimize emissions in these sectors as well as others. The International Energy Agency (IEA) estimates that global hydrogen demand could increase from 94 million metric tons (MMT) in 2021 to 660 MMT in 2050 and could lead to a reduction in total emissions of 80 billion metric tons of carbon dioxide (CO2). This study makes a consistent side-by-side comparison of the cost-effectiveness of producing pure, zero-emission hydrogen using different methods based on electricity and fossil fuel usage. For electricity- and fossil-fuel-based hydrogen production systems, a lifecycle GHG emission assessment and a preliminary schematic assessment were performed, assuming possible technology developments and emission projections over the next decade.

References

A cost comparison of various hourly-reliable and net-zero hydrogen production pathways in the United States / Justin M. Bracci et al. Nature communscations. 2023. P. 1–13. https://doi.org/10.1038/s41467-023-43137-x.

Багрій І.Д. Н2 – водень. Еколого-енергетичні виклики XXI сторіччя. Глобальні про’кти. Шляхи реалізації. Київ : ДП «Українська геологічна компанія», 2023. 292 с.

Багрій І.Д. Фундаментальні розробки – підґрунтя нових концепцій та високоефективних пошукових технологій (підземні води, вуглеводні). Київ : Фоліант, 2017. 562 с.

Fuel cells and the hydrogen revolution: Analysis of a strategic plan in Japan / N. Behling et al. Economic Analysis and Policy. 2015. Vol. 48. P. 204–221. https://doi.org/10.1016/j.eap.2015.10.002.

Лукин А.Е. Прямые поиски нефти и газа: причины неудач и пути повышения эффективности. Геолог Украины. Киев, 2004. № 3. С. 18–43.

Нариси дегазації Землі / В.М. Шестопалов та ін. Київ : ПП «Ітексервіс», 2018. 232 c.

Багрій І.Д., Кузьменко С.А. Наукове обґрунтування просторового розподілу і картування аномальних проявів водню – енергетичної сировини ХХІ ст. – у нафтогазоносних структурах України і попередження геодинамічних явищ. Геологічний журнал. 2019. № 1. С. 59–77. https://doi.org/10.30836/igs.1025-6814.2019.1.159241.

Русаков О.М. Глобальная инвентаризация измерений концентрации свободного и растворенного в подземных водах молекулярного водорода в земной коре суши. Геофизический журнал. Киев : Институт геофизики им. С.И. Субботина НАН Украины, 2020. № 6. Т. 42. С. 59–99.

Zgonnik V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews. 2020. P. 203–216.

Diffused flow of molecular hydrogen through the Western Hajar mountains / V. Zgonnik et al. Northern Oman. Arabian Journal of Geosciences. 2019. P. 71–83.

Published

2024-05-10