FERMENTATION OF CEREALS AND LEGUMES BY MACROMYCETES: STATE OF THE ART AND CURRENT RESEARCH TRENDS

Authors

DOI:

https://doi.org/10.32782/naturalspu/2025.2.1

Keywords:

fermentation, cereals, legumes, macromycetes, biosynthetic activity

Abstract

The article summarizes the latest data on the relevance and current state of research on cereal fermentation by macromycetes.This narrative review systematizes the results of fermentation of legumes (soybeans, lentils, beans), cereals (rice, wheat, barley, oats, sorghum, maize), and pseudocereals (quinoa) carried out by edible and medicinal species of macromycetes: Ganoderma lucidum, Grifola spp., Hericium spp., Lentinula edodes, Irpex lacteus, Pleurotus ostreatus. The role of macromycetes as a biotechnological tool that enables the modification of cereals, enhances their bioavailability, and enriches them with beneficial bioactive compounds is emphasized. Particular attention is paid to the analysis of changes in the chemical composition of fermented products, including the increase in amino acids, bioactive peptides, enzymes, and antioxidant compounds. The potential advantages of cereal fermentation by macromycetes for improving nutritional value and sensory properties, as well as the associated potential risks, are discussed.Fermentation technologies using macromycetes are considered separately, with a concise analysis of solid-state and submerged fermentation, their benefits, limitations, process conditions, and promising innovations for improving efficiency and industrial scalability. The presented results highlight the prospects of applying macromycetes for the development of functional foods and nutraceuticals that align with the principles of innovation, sustainability, and modern healthy nutrition trends. The article generalizes the latest data on the biotechnological potential of macromycetes and may serve both as a theoretical and methodological foundation for further experimental research and as a basis for developing new directions of their practical application in food technologies.

References

Sexton A.E., Garnett T., Lorimer J. Vegan food geographies and the rise of Big Veganism. Progress in Human Geog- raphy. 2022. Vol. 46, № 2. P. 605–628. DOI: https://doi.org/10.1177/03091325211051021.

Rippe J.M. Lifestyle medicine: The health-promoting power of daily habits and practices. American Journal of Life-style Medicine. 2018. Vol. 12, № 6. P. 499–512. DOI: https://doi.org/10.1177/1559827618785554.

Пахуча Е.В., Сєвідова І.О. Тенденції розвитку міжнародного ринку функціональних продуктів. Науково-виробничий журнал «Бізнес-навігатор». 2022. Вип. 1(68). С. 83–87. DOI: https://doi.org/10.32847/business-naviga-tor.68-26.

Precedence Research. Fermented foods market size to hit USD 394.91 billion by 2034. Available at: https://www.precedenceresearch.com/fermented-foods-market. Accessed [21.08.2025].

Chai F.K., Ng R.K., Samarasiri M., Chen W.N. Precision fermentation to advance fungal food fermentations. Current Opinion in Food Science. 2022. Vol. 47. P. 100881. DOI: https://doi.org/10.1016/j.cofs.2022.100881.

Sawant S.S., Park H.-Y., Sim E.-Y., Kim H.-S., Choi H.-S. Microbial fermentation in food: Impact on functional properties and nutritional enhancement – A review of recent developments. Fermentation. 2025. Vol. 11, № 1. P. 15. DOI: https://doi.org/10.3390/fermentation11010015.

Singh N., Gaur S. Exploring the microbial niche: Recent advances in fermentation for food and beverage production V. In: Rani R., et al. (Eds.). Innovative advancements in biotechnology (Advances in Science, Technology & Innovation, P. 141–156). Springer. 2024. DOI: https://doi.org/10.1007/978-3-031-80189-1_11.

Singh A., Kumar S. Exploring the functionality of microbes in fermented foods: Technological advance- ments and future directions. Fermentation. 2025. Vol. 11, № 6. P. 300. DOI: https://doi.org/10.3390/fermentation11060300.

Zhang Y., Zhu X., Wang N., Liu X., Wang L., Ning K. Synergy of traditional practices and modern technology: Advancing the understanding and applications of microbial resources and processes in fermented foods. Trends in Food Science & Technology. 2025. Vol. 157. P. 104891. DOI: https://doi.org/10.1016/j.tifs.2025.104891.

Niego A.G., Rapior S., Thongklang N., Raspé O., Jaidee W., Lumyong S., Hyde K.D. Macrofungi as a nutraceutical source: Promising bioactive compounds and market value. Journal of Fungi. 2021. Vol. 7, № 5. P. 397. DOI: https://doi.org/10.3390/jof7050397.

Romero J.C.F., Oprea O.B., Gaceu L., Más Diego S.M., Morris Quevedo H.J., Galindo Alonso L., Rivero Ramírez L., Badea M. Edible mushroom cultivation in liquid medium: Impact of microparticles and advances in control systems. Processes. 2025. Vol. 13, № 8. P. 2452. DOI: https://doi.org/10.3390/pr13082452.

Chugh R.M., Mittal P., Mp N., Arora T., Bhattacharya T., Chopra H., Cavalu S., Gautam R.K. Fungal mushrooms: A natural compound with therapeutic applications. Frontiers in Pharmacology. 2022. Vol. 13. P. 925387. DOI: https://doi.org/10.3389/fphar.2022.925387.

Sun X., Shi Y., Shi D., Tu Y., Liu L. Biological activities of secondary metabolites from the edible-medicinal macrofungi. Journal of Fungi. 2024. Vol. 10, № 2. P. 144. DOI: https://doi.org/10.3390/jof10020144.

Krupodorova T., Barshteyn V., Ivanova T. Screening of extracellular enzymatic activity of macrofungi. Journal of Microbiology, Biotechnology and Food Sciences. 2014. Vol. 4. P. 315–318.

Martínez-Burgos W.J., Ocáña D., Manzoki M.C., Barros R.N., Vieira R., Soccol C.R. Edible macromycetes as an alternative protein source: Advances and trends. Biotechnology Research and Innovation. 2024. Vol. 8, № 1. e2024002. DOI: https://doi.org/10.4322/biori.00022024.

Dudekula U.T., Doriya K., Devarai S.K. A critical review on submerged production of mushroom and their bioac- tive metabolites. 3 Biotech. 2020. Vol. 10, № 8. P. 1–12. DOI: http://doi.org/10.1007/s13205-020-02333-y.

Sangeeta, Sharma D., Ramniwas S., Mugabi R., Uddin J., Nayik G.A. Revolutionizing mushroom processing: Innovative techniques and technologies. Food Chemistry: X. 2024. Vol. 23. P. 101774. DOI: https://doi.org/10.1016/j.fochx.2024.101774.

Kim I.W., Lee H.B., Sim S.H., Yang E.I., Kim Y. Bioactive compounds and antioxidant activities of sprout soy- bean fermented with Irpex lacteus mycelia. Food Science and Biotechnology. 2017. Vol. 26. P. 1563–1570. DOI: https://doi.org/10.1007/s10068-017-0231-y.

Kim I.W., Kim Y.S. Changes in free amino acids, β-glucan, and volatile components of sprout soybeans fermented with Irpex lacteus mycelia. Journal of the Korean Society of Food Science and Nutrition. 2020. Vol. 49. P. 412–418. DOI: https://doi.org/10.3746/jkfn.2020.49.4.412.

Asensio-Grau A., Calvo-Lerma J., Heredia A., Andrés A. Enhancing the nutritional profile and digestibility of lentil flour by solid-state fermentation with Pleurotus ostreatus. Food Function. 2020. Vol. 11. P. 7905–7912. DOI: https://doi.org/10.1039/D0FO01527J.

Sánchez-García J., Asensio-Grau A., García-Hernández J., Heredia A., Andrés A. Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus. Bioresources and Biopro- cessing. 2022. Vol. 9. P. 51. DOI: https://doi.org/10.1186/s40643-022-00542-2.

Espinosa-Páez E., Alanis-Guzmán M.G., Hernández-Luna C.E., Báez-González J.G., Amaya-Guerra C.A., Andrés-Grau A.M. Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus fungus. Molecules. 2017. Vol. 22, № 12. P. 2275. DOI: https://doi.org/10.3390/molecules22122275.

Miura T., Yuan L., Sun B., Fujii H., Yoshida M., Wakame K., Kosuna K. Isoflavone aglycone produced by culture of soybean extracts with basidiomycetes and its anti-angiogenic activity. Bioscience, Biotechnology, and Biochemistry. 2002. Vol. 66, № 12. P. 2626–2631. DOI: https://doi.org/10.1271/bbb.66.2626.

Kohei S., Tsuyoshi T., Kazunari K.C. Soybean fermentation with basidiomycetes (medicinal mushroom mycelia). Biology, Technology, and Agriculture. 2020. Vol. 7. P. 23. DOI: https://doi.org/10.1186/s40538-020-00189-1.

Grimrath A., Berends P., Rabe S. Koji fermentation based on extracellular peptidases of Flammulina velutipes. European Food Research and Technology. 2011. Vol. 232. P. 415–424. DOI: https://doi.org/10.1007/s00217-010-1437-5.

Soodpakdee K., Nacha J., Rattanachart N., Owatworakit A., Chamyuang S. Fermentation with Pleurotus ostreatus enhances the prebiotic properties of germinated Riceberry rice. Frontiers in Nutrition. 2022. Vol. 9. P. 839145. DOI: https://doi.org/10.3389/fnut.2022.839145.

Nacha J., Soodpakdee K., Chamyuang S. Nutritional improvement of germinated Riceberry rice (Oryza sativa) cul- tivated with Pleurotus ostreatus mycelium. Trends in Sciences. 2023. Vol. 20, № 9. P. 5574. DOI: https://doi.org/10.48048/tis.2023.5574.

Benson K.F., Stamets P., Davis R., Nally R., Taylor A., Slater S., Jensen G.S. The mycelium of the Trametes ver- sicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating prop- erties in vitro. BMC Complementary and Alternative Medicine. 2019. Vol. 19, № 1. P. 342. DOI: https://doi.org/10.1186/s12906-019-2681-7.

Darmasiwi S., Yaovapa A.R., Kimkong I. Biological activities and chemical profile of Hericium erinaceus myce- lium cultivated on mixed red and white jasmine rice. Food Science and Technology, Campinas. 2022. Vol. 42. e08022. DOI: https://doi.org/10.1590/fst.08022.

Postemsky P., Curvetto N. Enhancement of wheat grain antioxidant activity by solid-state fermentation with Gri- fola spp. Journal of Medicinal Food. 2014. Vol. 17, № 5. P. 543–549. DOI: https://doi.org/10.1089/jmf.2013.0108.

Boonthatui Y., Chongsuwat R., Kittisakulnam S. Production of antioxidant bioactive compounds during mycelium growth of Schizophyllum commune on different cereal media. CMU Journal of Natural Sciences. 2021. Vol. 20, № 2. e2021032. DOI: https://doi.org/10.12982/CMUJNS.2021.032.

Lu H., Lou H., Hu J., Liu Z., Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Comprehensive Reviews in Food Science and Food Safety. 2020. Vol. 19, № 5. P. 2333–2356. DOI: https://doi.org/10.1111/1541-4337.12602.

Zhang J., Liu M., Zhao Y., Zhu Y., Bai J., Fan S., Zhu L., Song C., Xiao X. Recent developments in fermented cereals on nutritional constituents and potential health benefits. Foods. 2022. Vol. 11, № 15. P. 2243. DOI: https://doi.org/10.3390/foods11152243.

Paramithiotis S., Ray R.C. Recent concerns about fermented food safety. In: Martin J.G.P., De Dea Lindner J., Melo Pereira G.V.d., Ray R.C. (Eds.). Trending topics on fermented foods. Springer, Cham. 2024. DOI: https://doi.org/10.1007/978-3-031-72000-0_15.

Kitessa D.A. Review on effect of fermentation on physicochemical properties, anti-nutritional factors and sensory properties of cereal-based fermented foods and beverages. Annals of Microbiology. 2024. Vol. 74. P. 32. DOI: https://doi.org/10.1186/s13213-024-01763-w.

Sangeeta, Sharma D., Ramniwas S., Mugabi R., Uddin J., Nayik G.A. Revolutionizing mushroom processing: Innovative techniques and technologies. Food Chemistry: X. 2024. Vol. 23. P. 101774. DOI: https://doi.org/10.1016/j.fochx.2024.101774.

Rashidinejad A. The road ahead for functional foods: Promising opportunities amidst industry challenges. Future Postharvest and Food. 2024. Vol. 1, № 2. P. 266–273. DOI: https://doi.org/10.1002/fpf2.12022.

Martínez-Burgos W.J., Montes Montes E., Pozzan R., Serra J.L., Torres D.O., Manzoki M.C., Vieira R.L., dos Reis G.A., Rodrigues C., Karp S.G., Soccol C. R. Bioactive compounds produced by macromycetes for application in the pharmaceutical sector: Patents and products. Fermentation. 2024. Vol. 10, № 6. P. 275. DOI: https://doi.org/10.3390/fermentation10060275.

Published

2025-10-31