INFLUENCE OF AFLATOXIN B1 ON THE INTENSITY OF LIPID PEROXIDATION IN CURB TISSUES

Authors

DOI:

https://doi.org/10.32782/naturalspu/2025.2.8

Keywords:

aflatoxin B1, oxidative stress, lipid peroxidation, antioxidant enzymes, common crucian carp, aquaculture, biochemical markers

Abstract

In modern aquaculture, the intensive use of plant ingredients in fish feeds increases the risk of their contamination with mycotoxins.Among these compounds, aflatoxin B1 (AFB1), which is a potent toxicant and is known for its ability to cause oxidative stress, is of particular concern. In view of this, the aim of our work was to investigate the effect of AFB1 on lipid peroxidation processes and the state of antioxidant protection in the tissues of common crucian carp (Carassius carassius (Linnaeus, 1758)), an important commercial fish.The experiment lasted 14 days and was conducted on crucian carp pairs kept in 200-liter aquariums. The fish were divided into two groups: control (without the addition of AFB1) and experimental, which was daily supplemented with AFB1 at a concentration of 1.0 μg/L. After the experiment, biochemical analysis of liver, gill, brain and skeletal muscle tissues was performed. The intensity of lipid peroxidation processes was assessed by the level of end products – malondialdehyde (MDA) and intermediate products –diene conjugates. In addition, the activity of key enzymes of antioxidant defense was measured: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GP).The results obtained showed that the effect of aflatoxin B1 caused significant oxidative stress in the body of crucian carp. In all studied tissues of the experimental group, a statistically significant increase in the level of MDA and diene conjugates was recorded compared to the control group. The most pronounced changes were observed in the liver, which confirms its role as the main target organ for this toxin. At the same time, in response to the increased level of oxidative stress, compensatory activation of antioxidant defense enzymes occurred in the fish body, which is manifested in a significant increase in the activity of SOD, CAT and GP.These data indicate that aflatoxin B1, even at low concentrations, has a pronounced toxic effect, disrupting redox processes in the fish body. The results of our study are an important confirmation of the need to develop and implement effective strategies to minimize the negative consequences of aflatoxicosis in aquaculture, which includes the use of feed additives-adsorbents.

References

Bashorun A., Hassan Z. U., Al-Yafei M. A., Jaoua S. Fungal contamination and mycotoxins in aquafeed and tissues of aquaculture fishes and their biological control. Aquaculture. 2023. 576. 01–08. https://doi.org/10.1016/j.aquaculture.2023.739892.

Battilani P., Toscano P., van der Fels-Klerx H. J., Moretti A., Leggieri Camardo M., Brera, C., et al.. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 2013. 6. 24328. https://doi.org/10.1038/ srep24328.

Полотнянко Л., Мехед О. Накопичення мікотоксинів у м'язах коропа лускатого (Cyprinus carpio Linnaeus, 1758) при згодовуванні корму, контамінованого T2-токсином. Природні ресурси прикордонних територій в умовах зміни клімату. Чернігів : Десна-Поліграф. 2023. С. 105-106.

Gruber-Dorninger C., Müller A., Rosen R. Multi-Mycotoxin Contamination of Aquaculture Feed: A Global Survey. Toxins. 2025. Т. 17. № 3. С. 116. https://doi.org/10.3390/toxins17030116.

Symonova N. A., Mekhed O. B., Kupchyk O. Y., Tretyak O. P. Toxicants in the degradation of lipids in the organism of scaly carp. Ukrainian Journal of Ecology. 2018. 8(4), 6-10.

Головчак Н. П., Тарновська А. В., Коцюмбас Г. І., Санагуський Д. І. Процеси перекисного окиснення ліпідів у живих організмах : монографія. Львів: ЛНУ імені Івана Франка, 2012. 252 с.

Особа І. А. Біологічна роль перекисного окиснення ліпідів у забезпеченні функціонування організму риб. Рибогосподарська наука України. 2013. № 1. С. 87–96. URL: http://www.fishukr.org.ua.

Особа І. А., Грициняк І. І. Активність неферментативної ланки системи антиоксидантного захисту у печінці однорічок лускатих та рамчастих коропів несвицького зонального типу. Рибогосподарська наука України. 2010. № 3. С. 62–65. URL: http://www.fishukr.org.ua.

World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA, 2013. 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053.

Левадна О. В., Донченко Г. В., Валуцина В. М. та ін. Співвідношення між величинами активності ферментів антиоксидантної системи в різних тканинах інтактних щурів. Український біохімічний журнал. 1998. Т. 70, № 6. С. 53–58.

Ou P., Wolf S. P. Erythrocyte catalase inactivation (H2O2 production) by ascorbic acid and glucose in presence of aminotriazole: role of transition metals and relevance to diabetes. Biochemical Journal, 1994. 303, 935–940.

Доценко О. І., Доценко В. А., Міщенко А. М. Активність супероксиддисмутази і каталази в еритроцитах і деяких тканинах мишей в умовах низькочастотної вібрації. Фізика живого. 2010. Т. 18. № 1. С. 107–113.

Костюк В. А., Потапович А. І., Ковальова Ж. В. Простий і чутливий метод визначення активності супероксиддисмутази, заснований на реакції окиснення кверцетину. Питання медичної хімії. 1990. № 2. С. 88–91.

Lowry O., Rosebrough N., Farr A., Randall R. Protein measurement with the Folin phenol reagent. Journal Biological Chemystry. 1951. 193. 265–275. https://www.jbc.org/article/S0021-9258(19)52451-6/pdf.

Koletsi P., Schrama J.W., Graat E.A.M., Wiegertjes G.F., Lyons P., Pietsch, C. The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species–A Review. Toxins. 2021. Т. 13. № 6. С. 403. https://doi.org/10.3390/toxins13060403.

Liu H., Xie R., Huang W., Yang Y., Zhou M., Lu B., Li B., Tan B., Dong X. Negative effects of aflatoxin B1 (AFB1) in the diet on growth performance, protein and lipid metabolism, and liver health of juvenile hybrid grouper (Epinephelus fuscogut- tatus Epinephelus lanceolatus♂). Aquaculture Reports. 2023. Т. 33. С. 101779. https://doi.org/10.1016/j.aqrep.2023.101779.

Fornari D.C., Peixoto S., Ksepka S.P., Bullard S.A., Rossi W., Nuzback D.E., Davis D.A. Effects of dietary mycotoxins and mycotoxin adsorbent additives on production performance, hermatological parameters, and liver histology in juvenile Nile tilapia (Oreochromis niloticus). Frontiers in Animal Science. 2023. Т. 4. С. 1281722. https://doi.org/10.3389/fanim.2023.1281722.

Phudkliang J., Soonthornchai W., Maele L.V., Xu H., Qi Z., Lee P.-T., Chantiratikul A., Wangkahart E. Studies on the use of mycotoxin binders as an effective strategy to mitigate mycotoxin contamination in aquafeed: A case study in Nile tilapia (Oreochromis niloticus). Aquaculture Reports. 2025. Т. 43. С. 102984. https://doi.org/10.1016/j.aqrep.2025.102984.

Kovalsky P.; Kos G.; Nährer K.; Schwab C.; Jenkins T.; Schatzmayr G.; Sulyok M.; Krska R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-an extensive survey. Toxins. 2016. 8. 363.

Published

2025-10-31