BIOCHEMICAL INDICATORS OF COMMON SOYBEAN PLANTS INFECTED WITH SOYBEAN MOSAIC VIRUS

Authors

DOI:

https://doi.org/10.32782/naturalspu/2025.2.9

Keywords:

Glycine max L., soybean mosaic virus; protein; trypsin inhibitor; proteases; biochemical indicators; plant resistance

Abstract

This study presents the results of a comprehensive analysis of the impact of soybean mosaic virus (SMV) infection on the biochemical parameters of soybean plants of Ukrainian breeding. The relevance of the research is determined by the considerable yield losses caused by SMV, which can reach 50–70%, as well as by the insufficient knowledge of the biochemical mechanisms underlying the host–pathogen interactions. Elucidating these mechanisms is crucial for the development of breeding strategies aimed at increasing soybean resistance to viral diseases.The objects of the study were healthy and SMV-infected plants of soybean cultivars ‘Avrora’, ‘Ariadna’, ‘Vasylkivska’, ‘Zmina’, ‘Evridika’, ‘Serenada’, ‘Syayvo’, ‘Odesytka’, ‘Tavriya’, and ‘Fenix’. The evaluation included total protein content, soluble sugars, flavonoids, chlorophyll a and b, carotenoids, as well as the activity of neutral protease and trypsin inhibitor.The results showed that viral infection induced complex metabolic changes: a significant reduction in protein and chlorophyll content, reflecting the suppression of photosynthetic activity, accompanied by an increase in soluble sugars in some cultivars. At the same time, a tendency towards flavonoid accumulation and variable changes in carotenoid content were observed, indicating the activation of antioxidant and adaptive mechanisms in response to stress. The nature of responses differed among cultivars: some (‘Vasylkivska’, ‘Fenix’) demonstrated more pronounced accumulation of protective metabolites, while others (‘Evridika’, ‘Odesytka’) exhibited higher susceptibility.Thus, the findings demonstrate that SMV significantly alters protein, carbohydrate, and pigment metabolism in soybean plants, with cultivar-specific responses highlighting the potential of certain genotypes for breeding resistant varieties. These data provide important insights into the biochemical mechanisms of resistance and can be applied in the development of practical strategies for crop protection.

References

Міщенко Л.Т. Вірусні хвороби озимої пшениці. Київ : Фітосоціоцентр, 2009. 352 с.

Mishchenko L., Dunich A., Mishchenko I., Berlizov V., Petrenkova V., Molchanets O. Influence of climate change on wheat viruses variability in Ukraine. Agriculture & Forestry. 2017. Vol. 63, No. 4. P. 43–50. https://doi.org/10.17707/agricultforest.63.4.04.

Irvin M.E., Schultz G.A. Soybean mosaic virus. FAO Plant Protection Bulletin. 1981. Vol. 29. P. 41–55.

Naghavi A., Habibi M.K., Firouzabadi F.N. Detection and identification of some soybean viral mosaic viruses using molecular techniques in Lorestan Province, South West of Iran. Asian Journal of Plant Science. 2008. Vol. 7. P. 557–562.

Strömvik M.V., Latour F., Archambault A., Vodkin L.O. Identification and phylogenetic analysis of sequences of Bean pod mottle virus, Soybean mosaic virus, and Cowpea chlorotic mottle virus in expressed sequence tag data from soybean. Canadian Journal of Plant Pathology. 2006. Vol. 28. P. 1–12.

Usovsky M., Chen P., Li D., Wang A., Shi A., Zheng C., Shakiba E., Lee D., Vieira C.C., Lee Y.C., Wu C., Cervantez I., Dong D. Decades of genetic research on Soybean mosaic virus resistance in soybean. Frontiers in Microbiology. 2022. Vol. 13. P. 1122. https://doi.org/10.3389/fmicb.2022.1122.

Farmer E.E., Ryan C.A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences. 1990. Vol. 87, No. 19. P. 7713–7716. https://doi.org/10.1073/pnas.87.19.7713.

Jain D., Khurana J.P., Singh A., Singh I. (Eds.). Role of pathogenesis-related (PR) proteins in plant defense mechanism. In: Molecular Aspects of Plant-Pathogen Interaction. Singapore : Springer, 2018. P. 265–280. https://doi.org/10.1007/978-981-10-7371-7_13.

Hernández J.A., Gullner G., Clemente-Moreno M.J., Künstler A., Juhász C., Díaz-Vivancos P., Király L. Oxidative stress and antioxidative responses in plant–virus interactions. Physiological and Molecular Plant Pathology. 2016. Vol. 94. P. 134–148. https://doi.org/10.1016/j.pmpp.2015.09.001.

Кириченко А.М. Вплив вірусу жовтої мозаїки квасолі на метаболізм фотосинтетичних пігментів, білків і вуглеводів у Glycine soja L. Мікробіологічний журнал. 2014. Т. 76, № 1. С. 47–52.

Mao C., Shan S., Huang Y., Jiang C., Zhang H., Li Y., Chen J., Wei Z., Sun Z. The hypervariable N-terminal of soybean mosaic virus P1 protein influences its pathogenicity and host defense responses. Phytopathology Research. 2022. Vol. 4. Article 10. https://doi.org/10.1186/s42483-022-00115-3.

Bera S., Arena G.D., Ray S., Flannigan S., Casteel C.L. The potyviral protein 6K1 reduces plant proteases activity during Turnip mosaic virus infection. Viruses. 2022. Vol. 14, No. 6. P. 1341. https://doi.org/10.3390/v14061341.

Determination of the total nitrogen content of hard, semihard, and processed cheese by the Kjeldahl method (Collaborative Study). Journal of AOAC International. 2004. Vol. 87, No. 2. P. 396–406.

Єщенко, В. О., Копитко, П. Г., Опришко, В. П. Основи наукових досліджень в агрономії / за ред. В. О. Єщенка. – Київ : Дія, 2005. – 288 с.

Breite A. G., Dwulet F. E., McCarthy R. C. Tissue dissociation enzyme neutral protease assessment. Transplantation Proceedings. 2010. Vol. 42, No. 6. P. 2052–2054. https://doi.org/10.1016/j.transproceed.2010.05.118

Liu K. Soybean trypsin inhibitor assay: further improvement of the standard method approved and reapproved by American Oil Chemists Society and American Association of Cereal Chemists International. J. Am. Oil Chem. Soc. 2019. Vol. 96. P. 635–645. https://doi.org/10.1002/aocs.12273.

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951. Vol. 193, No. 1. P. 265–275.

Hedge, J. E., & Hofreiter, B. T. Carbohydrate chemistry. In Whistler, R. L. & Be Miller, J. N. (Eds.) Methods in Carbohydrate Chemistry. New York: Academic Press, 1962. P. 17–22.

Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research. 2006. Vol. 89, No. 1. P. 27-41. DOI: https://doi.org/10.1007/s11120-006-9065-9

Mishchenko L.T., Dunich A.A., Skrypkina I.Y., Kozub N.O. Phylogenetic analysis of two Ukrainian isolates of Wheat streak mosaic virus. Biopolymers and Cell. 2019. Vol. 35, No. 1. P. 64–77. https://doi.org/10.7124/bc.000997.

Campos R.E., Bejerman N., Nome C., Laguna I., Rodriguer P.P. Bean Yellow mosaic virus in soybean from Argentina. Journal of Phytopathology. 2014. Vol. 162. P. 222–325.

Mishchenko L.T., Dunich A.A., Shevchenko T.P., Budzanivska I.G., Polischuk V.P., Andriychuk O.M., Molchanets O.V., Antipov I.O. Detection of soybean mosaic virus in some left-bank forest-steppe regions of Ukraine. Мікробіологічний журнал. 2017. Т. 79, № 3. С. 3–14.

Zakaryan H., Arabyan E. , Oo A. , Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol.2017. Vol. 162. P.2539–2551.

Osmani, Z., Sabet, M.S. & Nakahara, K.S. (2022). Aspartic protease inhibitor enhances resistance to potato virus Y and A in transgenic potato plants. BMC Plant Biol 22, 241. https://doi.org/10.1186/s12870-022-03596-8

Misas-Villamil, J.C., van der Hoorn, R.A., Doehlemann, G. (2016). Papain-like cysteine proteases as hubs in plant immunity. New Phytol. 212, 902–907.

Published

2025-10-31